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CALCULATION OF HEAT TRANSFER IN NOZZLES
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The author proposes a simplified method for calculating the heat
transfer in subsonic and supersonic nozzles. The method is based on
a solution of the energy equation using relative heat transfer laws,

The intensity of heat transfer in nozzles depends
on many factors such, for example, as gas flowrate,
geometrical dimensions, compressibility, noniso-
thermicity, length of preconnected section, roughness,
chemical reactions, etc.

Formulas for calculating the heat transfer in noz-
zles were obtained in experimental studies [1-5]. In
these formulas the basic parameters are the gas flow-
rate and the nozzle dimensions. The effect of other
factors is taken into account somewhat arbitrarily,
for example, by selecting a corresponding character-
istic temperature, introducing correction factors,
and so on,

More effective results can be obtained by combining
experimental data with theoretical methods that take
into account the longitudinal development of the thermal
boundary layer, In [6, 7] Bartz gives an approximate
theoretical solution of the problem of heat transfer in
nozzles. In this solution the friction law obtained for
an incompressible gas is extended to include com-
pressibility by introducing an "arithmetic mean” char-
acteristic temperature. In [8] Repik and Chekalin
propose a calculation method based on a certain ef-
fective length which takes into account the previous
history of development of the boundary layer. The
present paper examines a simplified method of de-
termining the heat transfer in nozzles based on a
solution of the energy equation using relative heat
transfer laws.

For axisymmetric flow inthe absence of a transverse
mass flux the equations of the thermal boundary layer
in integral form may conveniently by written as [9]
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Fig. 2. F(x) as a function of x and k. The
curves 1, 2, 3 correspond to the values
k=12, 1.4, 1.67.

Here r is the variable nozzle radius, x a coordinate
reckoned along the generator, L a certain character-
istic length, p, w, pg, wq the density and velocity in
the boundary layer and at-its outside edge, n the re-
covery vactor, k the adiabatic exponent, M the Mach
number, pg, Koo the values of the dynamic viscosity
at the thermodynamic T and stagnation Ty, tempera-
tures ; the subscript w denotes the parameters at the
wall; ¥ is a relative quantity representing the ratio of
the Stanton number S under the given conditions (i.e.,
in the presence of compressibility, nonisothermicity,
chemical reactions, etc.) to the Stanton number on a
flat plate at the same values of Rff*, but in the ab-
sence of perturbing factors,

The value of ¥ taking into account the effect of non-
isothermicity and compressibility can be found both
experimentally and on the basis of the theory of lim-
iting laws, In accordance with [10],
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D. B. Spalding, approximating the formulas pre-
sented in [8], has proposed the following expression
for ¥:
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Having (2), (3), and (5), we can determine the val-
ues of the heat transfer coefficients along the length
of the nozzle. The validity of this method is confirmed
in [9]. However, this calculation is rather laborious.
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Fig. 3. Comparison of theoretical curve with
experimental data of [1] at ¢ = 0.637-0.765,

Below we will consider certain simplifications of the
theoretical method, which make possible a consider-
able reduction in the volume of calculation. At the
same time, the generality of the method is preserved
and the accuracy remains good enough for practical
purposes.

We will consider a subsonic nozzle, Since in this
case the thermodynamic flow temperature varies only
slightly along the length of the nozzle, the ratio u,/
/o is close to unity. If we introduce a certain mean
wall temperature Ty, and assume that it is constant
along the length of the subsonic part of the nozzle, then
the value of ¥ in (5) may also be considered constant.
This iisumption is perfectly permissible in determin-
ing R for f1ndmg SO from the secondof Eqs. (2), since
in this equation RT is present to the power m = (.25,
In order to find S from (2), the expression for ¥ may
be taken as a function of x.

Any axisymmetric nozzle contour can be represented

as consisting of a series of conic sections (Fig. 1).
We take the origin for calculating coordinate x along
the generator as shown in Fig. 1, i.e., at the be-
ginning of each conic section. The length scale L for
each section
L= ?u?‘l/"zs“ . (6)
Here D° is the inlet diameter of the conic section, §j
is its total taper angle (0 < 8;/2 < 90°).

We express the variation of the parameters along
the nozzle in terms of the continuity equation
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Here Dj is the variable nozzle diameter. For a

convergent nozzle
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Equation (5) can now be reduced to the form
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Here the inlet parameters are denoted by the sign °
The values of B and M have been taken as 0.0252 and
0.25 respectively.

The heat transfer coefficients in each conic section
are found from the expression
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Here G is the gas flowrate through the nozzle per sec-
ond, and ¢; is the specific heat.
Finally, we have
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where values of R;w* are found from Eq. (8).

We will now consider the supersonic part of the
nozzle. For this part it is also possible to assume the
constancy of a certain mean wall temperature. At
moderate values of M = 3 we may assume that (u,/
/100)’?% ~ 1. For example, for air (uo/ue)’?* =0.9
at M = 3. In practice, the contour of the supersonic
part of the nozzle is often conical or canbe sufficiently
closely approximated by a single conic section. Here,
as distinct from in the subsonic part, the function
¥ varies appreciably with respect to x. However, at
Ty, = const the factor in Eq. (3) containing the ratio
TW/TV); can be taken out of the integrand, since Ty
scarcely changes along the length of the nozzle. Thus,
with account for (7), Eq. (5) for a divergent nozzle
becomes
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Fig. 4. Comaparison of theoretical curves and

experimental data [9] for ¢ = 0.580-1.48 M =

= 2.9 (convergent parts approximated by three

conical surfaces; continuous curve based on
(8), (10), broken curve based on (5)).

Here the nozzle throat parameters are denoted by a
an * For a one-dimensional flow the values of M are
uniquely related with the ratio D;/D 4 or with the co-
ordinate xj. Thus, the integral of Eq. (11) can be
evaluated and tabulated. Figure 2 gives values of this
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integral for different k at n = 0.9, Since (u of Boo) =
= (To/Top)4, while Ty/Ty; is a function of the M num-
ber and hence of the coordinate x{, the integral of
Eqg. (11) can be tabulated without assuming that (uy/
/uou)m = 1, This is desirable when M > 3 and when
the exponent ¢ is known for the conditions in question.
Thus, for determining the heat transfer coef-
ficients in the nozzle we obtain the equations (B =
=0.0252, m = 0.25)
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Values of F(xj) are given in Fig. 2; xj is reckoned
from the throat section. The value of RT* at x; = 0
is known from the calculation for the subsonic part
of the nozzle.

When it is necessary to approximate the nozzle con-
tours by several conic sections, the first of Eqs. (12)
changes form. In the notation of Fig. 1, the heat trans-
fer is calculated from
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In this case, too, the values of x; are reckoned
from the throat section irrespective of whether the
supersonic part of the nozzle consists of one or more
conic sections. This is possible thanks to relation
(6), as a result of which x5 is a function only of the
ratio of the diameters:

2 = 0.5 (DyDy — 1),

As a result of these simplifications, equations con-
venient for calculation are obtained. The labor of
calculation can be substantially reduced, if all the
cofactors of the equations containing x are tabulated.

In Figs. 3-5 the experimental data and data cal-
culated from Eq. (5) and by the simplified method
(Egs. (8), (10), (12)) are compared. As may be seen
from the graphs, the agreement between theory and
experiment is quite satisfactory. An exception is
formed by Bakirov's data for the throat section only,
which are considerably lower than the calculated
values.

The relative law of heat transfer ¥ deserves special
attention. For the subsonic part of nozzles the effect
of the M number on ¥ can be neglected and thus in this

zone the quantity ¥ depends almost exclusively on the
temperature factor
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Fig. 5. Comparison of calculations with the
experimental data of [4] (convergent part ap-
proximated by a single conic section); § =

= 0.225 M = 2.6, Curves a, b correspond to
experiments at pressures of 6 - 10° N/m?
1.38 - 10° N/m? the stepped curve 1 cor-
responds to calorimetric measurements,

In the above examples ¢ < 1. The published ex-
perimental data on the effect of the temperature fac-
tor on heat transfer at § < 1 are rather contradictory,
and thus there is still no unanimous opinion about
the dependence of ¥ on ¥ at < 1.

In accordance with the theory of limiting laws, at
¥ < 1 the function ¥ increases with decrease in §. In
this case the correction for finite Rri[k‘* numbers has
an appreciable effect on ¥ only at small values of ¢.

The theoretical and experimental data presented in
Figs. 3-5 confirm the regular qualitative and quan-
titative influence of ¥ on heat transfer at ¥ < 1. The
values of ¥ in {10), (12) for ¢ close to unity were cal-
culated from the limit formula (3), while for small
values of 3 with account for finite R:{x* numbers [8]
and under the conditions considered the value of ¥
varied from 1.1 to 1.3. Since in (10), (12) the ij*
number is present to the power 0.25, values of ¥ for
determining R%* from (5) were found from the limit
relations (3), (4).

It should be mentioned that theoretical calculations
using the function ¥ make it possible to calculate the
heat transfer in nozzles under nonstationary conditions.
The proposed simplified method can also be extended
to the case of variable wall temperature, For this it
is necessary to average the wall temperature within
the limits of each conic section. We note that this
simplified method always permits estimation of the
error introduced as compared with the exact method
on Eq. (5).
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